160 Fracture characterization utilizing XRMI tool and mud loss data, Case study: investigation of fault-related fractures in one of Iranian southwest oil field


Recognition of Subsurface fracture system is of prime importance for developing carbonate hydrocarbon-bearing fields. The purpose of this study was to employ XRMI in order to provide details of fault related fractures characterization. Also faults and fractures were recognized and assessed through analyze raw data by means of special software at one well of a carbonate reservoir locating in SW oilfield of Iran. Much more open fractures associated with eight possible faults were observed within this well at the different depths. A total six of the observed possible faults had followed the general Zagros folding trend. The validation of the obtained results was checked with the comparison of other available field evidences (i.e. mud loss data). The results demonstrated that distinguished fracturing system provides a realistic and accurate description of target area.

Keywords: X-tended Range Micro Imager (XRMI), Fault Related Fractures, Carbonate Reservoir, Mud Loss.


  • Rezaee, M. R., 2002. Petroleum Geology, 479 pp, Tehran, Alavi Publication.


  • Khoshbakht, F., Azizzadeh, M., Memarian, H., Nourozi, G. H., & Moallemi, S. A. 2012. Comparison of electrical image log with core in a fractured carbonate reservoir. Journal of Petroleum Science and Engineering, 86, 289-296.‏


  • McGinnis, R. N., Ferrill, D. A., Smart, K. J., Morris, A. P., Higuera-Diaz, C., & Prawica, D. 2015. Pitfalls of using entrenched fracture relationships: fractures in bedded carbonates of the Hidden Valley fault zone, Canyon Lake Gorge, Comal County, Texas. AAPG Bulletin, 99(12), 2221-2245.‏


  • Rezaei, M. R., Chehrazi, A. 2005. Fundamentals of Well Log Interpretation. 805 pp, Tehran, University of Tehran.


  • Bourbiaux, B. 2010. Fractured reservoir simulation: A challenging and rewarding issue. Oil & Gas Science and Technology–Revue de l’Institut Français du Pétrole, 65(2), 227-238.‏


  • Guerriero, V., Vitale, S., Ciarcia, S., & Mazzoli, S. 2011. Improved statistical multi-scale analysis of fractured reservoir analogues. Tectonophysics, 504(1), 14-24.‏


  • Schlumberger, 2007. Carbonate reservoirs.” Schlumberger market analysis, http://www.slb.com/media/files/industry-challenges/carbonates/brochures/cb-carbonate-reservoir-07OS003.ashx.


  • Soleimani, B., Mousavi, R., & Shaaban, L. 2016. Natural fracture analysis and determination of fracture parameter using image log, Bangestan Reservoir, Gachsaran oil field, SW Iran. Journal of Tethys, 4(2), 124-133.‏


  • Saedi, G., Soleimani, B., & Esmaeilzadeh, S. 2017. Fracture characterization utilizing FMI, velocity deviation logs, core description and thin sections data. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 284(1), 15-28.‏


  • Khoshbakht, F., Memarian, H., & Mohammadnia, M. 2009. Comparison of Asmari, Pabdeh and Gurpi formation’s fractures, derived from image log. Journal of Petroleum science and Engineering, 67(1), 65-74.‏


  • Ahmadhadi, F., Lacombe, O., & Daniel, J. M. 2007. Early reactivation of basement faults in Central Zagros (SW Iran): evidence from pre-folding fracture populations in Asmari Formation and lower Tertiary paleogeography. In Thrust Belts and Foreland Basins, Springer Berlin Heidelberg, 205–208.


  • Ahmadhadi, F., Daniel, J. M., Azzizadeh, M., & Lacombe, O. 2008. Evidence for pre‐folding vein development in the Oligo‐Miocene Asmari Formation in the Central Zagros Fold Belt, Iran. Tectonics, 27(1).‏


  • Rezaie, A. H., & Nogole-Sadat, M. A. 2004. Fracture modeling in Asmari reservoir of Rag-e Sefid oil-field by using Multiwell Image Log (FMS/FMI). Iranian International Journal of Science, 5(1), 107-121.


  • Gholipour, A. M. 1998. Patterns and structural positions of productive fractures in the Asmari Reservoirs, Southwest Iran. Journal of Canadian Petroleum Technology, 37(01).‏


  • McQuillan, H. 1973. Small-scale fracture density in Asmari Formation of southwest Iran and its relation to bed thickness and structural setting. AAPG Bulletin, 57(12), 2367-2385.‏


  • McQuillan, H. 1974. Fracture patterns on Kuh-e Asmari anticline, southwest Iran. AAPG Bulletin, 58(2), 236-246.‏


  • Alavi, M. 2007. Structures of the Zagros fold-thrust belt in Iran. American Journal of science, 307(9), 1064-1095.‏


  • Thompson, L. B. 2000. Fractured reservoirs: Integration is the key to optimization. Journal of petroleum technology, 52(02), 52-54.‏


  • Tingay, M., Reinecker, J., & Müller, B. 2008. Borehole breakout and drilling-induced fracture analysis from image logs. World Stress Map Project, 1-8.‏


  • Aghli, G., Soleimani, B., Moussavi-Harami, R., & Mohammadian, R. 2016. Fractured zones detection using conventional petrophysical logs by differentiation method and its correlation with image logs. Journal of Petroleum Science and Engineering, 142, 152-162.‏


  • Zahmatkesh, I., Aghli, G., & Mohammadian, R. 2015. Systematic fractures analysis using image logs and complementary methods in the Marun Oilfield, SW Iran. Geopersia, 5(2), 139-150.‏


  • Hosseini, E., Ghojogh, J. N., & Habibnia, B. 2015. Study of Faults in Asmari Formation by FMI Image Log, Case Study: Lali Oilfield. American Journal of Oil and Chemical Technologies, 3(5).‏


  • Halliburton, 2012. X-tended Range Micro Imager (XRMI™) Tool. Halliburton, 2P.


  • Sepehr, M., & Cosgrove, J. W. 2004. Structural framework of the Zagros fold–thrust belt, Iran. Marine and Petroleum geology, 21(7), 829-843.


  • Aadnoy, B. S. 1990. Inversion technique to determine the in-situ stress field from fracturing data. Journal of Petroleum Science and Engineering, 4(2), 127-141.‏