Forced Convective Heat Transfer of Nano fluids: A Review of the Recent Literature


The forced convection of fluids has been investigated by numerous researchers, both experimentally and numerically. A good understanding of characteristics of nanofluid flowhas thoroughly been investigated in these studies. In recent years, many researchers have tried to fill the gaps on this subject in the literature. This paper reports on most of the forced convective heat transfer literature occurring both in-tubes and in-channels regarding the use and preparation of nanofluids. The peer reviewed papers published in citation index journals up to 2013 have been selected for review in the paper. Classification of the papers has been performed according to the publication years. The critical information on the theoretical, experimental and numerical works is presented comprehensively for each paper.

Keywords: Nano fluids; Rheological; Instability; Forced convective heat transfer; Heat transfer coefficient.

PDF Format of Article



  • Choi, U.S. Enhancing thermal conductivity of    fluids with nanoparticle. ASME FED 231, 1995, 231, 99-103.
  • Davarnejad ,R.; Barati ,S.; Kooshki, M . ; CFD simulation of the effect of particle size on the nanofluids convective heat transfer in the developed region in a circular tube . Int. J. Springer plus , 2013, 2 , 192.
  • Elisa, M.M .; Migdad ,M .; Mahbubul ,I.M .; Saidur,R .; Kamalisarvestani, M .; Sohel,M.R .; Hepbasli ,A,; Rahim ,N.A .; Amalina ,M.A .; Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger . Int. Commun. Heat Mass Trans., 2013, 44, 93-99 .
  • Fan,T .; XU,H .; Pop,I .; Mixed convection heat transfer in horizontal channel filled with nanofluids. Int. J. Springer plus , 2013, 34, 339-350 .
  • Ghozatloo,A.; Shariaty-Niasar,M .; Rashidi , A.M .; Preparation of nanofluids from functionalized Graphene by new alkaline method and study on the thermal conductivity and stability . Int. Commun. Heat Mass Trans., 2013, 42, 89-94 .
  • Huminic,G .; Huminic, A.; Numerical analysis of laminar flow heat transfer of nanofluids in a flattened tube . Int. Commun. Heat Mass Trans. 2013, 44, 55-57.
  • Jahanbin,A.H .; Javaherdeh,K .; Numerical investigation of CuO nanoparticles effect on forced convective heat transfer inside a mini-channel : Comparison of different approaches . Int. J. Life Science. 2013 , 10(8s).
  • Javadi,F.S .; Sadeghipour,S .; Saidur,R. ; BoroumandJazi,G.;Rahmati,B.;Elias,M.M.;Sohel,M.R.;The effects of nanofluid on thermophysical properties and heat transfer characteristics of a plate heat exchanger . Int. Commun. Heat Mass Trans. 2013 , 44, 58-63.
  • Jokar,A .; O Halloran,S.P .; Heat transfer and fluid flow analysis of nanofluids in corrugated plate heat exchangers using computational fluid dynamics simulation. J .Thermal Sci. Eng .Appl 2013 , 5(1), 011002.
  • Ma, J .; Xu,Y.; Li, W.; Zhao,J .; Zhang,S .; Basov,S. Experimental investigation into the forced convective heat transfer of aqueous Fe3O4 nanofluids under transition region. J. Nanoparticle . 2013 , 601363.
  • Mohammed, H.A .; Hasan,H.A .; Wahid, M.A .; Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts . Int. Commun. Heat Mass Trans., 2013 . 40, 36-46 .
  • Mohammadian, S.K .; Layeghi, M.; Hemmati,M .; Experimental study of forced convective heat transfer from a vertical tube conveying dilute Ag/DI water nanofluids in a cross flow of air. Int. Nano Letters. 2013 , 3: 15.
  • Keshavarz Moravej ,M .;Mohammadi Ardehali, R. CDF modeling(comparing single and two-phase approaches) on thermal performance of Al2O3 / water nanofluid in mini-channel heat sink. . Int. Commun. Heat Mass Trans., 2013, 44, 157-164 .
  • Naphon , P .; Nakharintr , L. Heat transfer of nanofluids in the mini-rectangular fin heat sinks . Int. Commun. Heat Mass Trans., 2013 ,40, 25-31.
  • Rabeti, M .; Noghreabadi, A.; Ghanbarzade, A.; Forced convection heat transfer over a horizontal plate embedded in a porous medium saturated with a nanofluid in the presence of heat Sources .J. Advances in Energy Engineering (AEE).2013 ,1(3).
  • Saberi, M .; Kalbasi, M.; Alipourzade,A .Numerical study of forced convective heat transfer of nanofluids inside a vertical tube . Int. J. Therm. Tech. 2013 , 3,1.
  • Sohel ,M.R .; Saidur , R.; Mohd Sabri, M.F .; Kamalisarvestani, M .; Elisa, M.M.; Ijam , A. Investigating the heat transfer performance and thermophysical properties of nanofluids in a circular micro-channel . Int. Commun. Heat Mass Trans.   2013 , 42, 75 – 81.
  • Syam Sundra, L.; Singh,M.K .; Sousa, A.C.M. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications . Int. Commun. Heat Mass Trans. 2013 ,44, 7-14.
  • Syam Sundra, L.; Hashim Farooky,Md.; Naga Sadra,S .; Singh, M.K . Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids . Int. Commun. Heat Mass Trans. 2013 ,41, 41-46 .
  • Tavassolpour,S.;Khodamrezaee ,F.; Noghrehabadi, A.R.; Abaiebaghri, A.Numerical study of developing laminar forced convection of a nanofluid flow through the parallel plates with constant wall temperature. American.J.Adv.Sci.Research .2013 , 1(7), 286-294.
  • Vakili, M.; Mohebbi, A.; Hashemipour, H . Experimental study on convective heat transfer of TiO2 nanofluids. J. Heat Mass Transfer, 2013, 49(8), 1159-1165.
  • Zabihi, K.; Gholamian ,F.; Vasefi, S.I.Experimental and numerical investigation of Al2O3-water nanofluid inside a triangular tube.Int. J. Word Appl.Sci.2013 ,22(5),601-607 .
  • Alizad, K.; Vafai, K.; Shafahi M. Thermal performance and operational attributes of the startup characteristics of flat-shaped heat pipes using nanofluids. Int. J. Heat Mass Transfer, 2012, 55, 140-155.
  • Bobbo, S.; Fedele, L.; Benetti, A.; Colla, L.; Fabrizio, M.; Pagura, C.; Barison,S. Viscosity of water based SWCNH and TiO2 nanofluids. Exp. Therm. Fluid Sci., 2012, 36, 65-71.
  • Buschmann, M. H.; Thermal conductivity and heat transfer of ceramic nanofluids. Int. J. Therm. Sci., 2011, Article in Press-Corrected Proof.
  • Yang, L.; Du, K.; Ding, Y. H.; Cheng, B.; Li, Y. J. Viscosity-prediction models of ammonia water nanofluids based on various dispersion types. Powder Technol., 2012, 215-216, 210-218.
  • Colangelo, G.; Favale E.; Risi A.; Laforgia, D. Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications. Appl. Energy, 2011, Article in Press- Corrected Proof..
  • Jamshidi, N.; Farhadi, M.; Sedighi, K.; Ganji, D. D. Optimization of design parameters for nanofluids flowing inside helical coils. Int. Commun. Heat Mass Trans., 2011, 39, 311-317.
  • Giraldo, M.; Sanin, D.; Flórez, W. F. Heat transfer in nanofluids: A computational evaluation of the effects of particle motion. Appl. Math. Comput., 2011, Article in Press-Corrected Proof.
  • S. Özerinç, A .G. Yazıcıoglu, S. Kakaç, Numerical analysis of laminar forced convection with temperature-dependent. Int. J. Therm. Sci., 2011, Article in Press-Corrected Proof.
  • Yu, L.; Liu, D.; Botz, F. Laminar convective heat transfer of aluminapolyalphaolefin nanofluids containing spherical and non-spherical nanoparticles. Exp. Therm. Fluid Sci., 2011, 37, 72-83.
  • Farahani, S.D.; Kowsary, F. Estimation local convective boiling heat transfer coefficient in mini channel. Int. Commun. Heat Mass Trans., 2011, 39, 304-310
  • Cimpean, D. S.; Pop, I. Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium. Int. J. Heat Mass Transfer, 2012, 55, 907-914.
  • Leong, K.Y.; Saidur, R.; Mahlia, T.M.I.; Yau, Y.H. Modeling of shell and tube heat recovery exchanger operated with nanofluid based coolants.   Int. J. Heat and Mass Transfer, 2012, 55, 808-816.